29 research outputs found

    Intermolecular-medium and intramolecular-weak hydrogen bonding chains in the crystals of chiral trifluoromethylated amino alcohols

    Get PDF
    A structural feature of hydrogen bonding chains found in the crystals of trifluoromethylated amino alcohols is reported. Hydrogen bondings of 3-(N,N-dialkylamino)-1,1,1-trifluoro-2-propanols construct chiral spiral hydrogen bonding chains. Lone pairs on the nitrogen atoms of the amino alcohols participate in two hydrogen bondings. Detailed structural analysis of the hydrogen bonds of the 3-(N,N-dimethylamino)-1,1,1-trifluoro-2-propanol suggested that the chain built up with alternating intermolecular medium and intramolecular weak hydrogen bonds. The medium intermolecular hydrogen bond, which transfers a proton from the hydroxy group to the amino nitrogen, would make a tentative zwitterionic form of the molecule. Then, electrostatic attraction between the charges in the zwitterion centers induced a weak intramolecular hydrogen bond.</p

    A multi-ethnic meta-analysis identifies novel genes, including ACSL5, associated with amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating progressive motor neuron disease that affects people of all ethnicities. Approximately 90% of ALS cases are sporadic and thought to have multifactorial pathogenesis. To understand the genetics of sporadic ALS, we conducted a genome-wide association study using 1,173 sporadic ALS cases and 8,925 controls in a Japanese population. A combined meta-analysis of our Japanese cohort with individuals of European ancestry revealed a significant association at the ACSL5 locus (top SNP p = 2.97 × 10−8). We validated the association with ACSL5 in a replication study with a Chinese population and an independent Japanese population (1941 ALS cases, 3821 controls; top SNP p = 1.82 × 10−4). In the combined meta-analysis, the intronic ACSL5 SNP rs3736947 showed the strongest association (p = 7.81 × 10−11). Using a gene-based analysis of the full multi-ethnic dataset, we uncovered additional genes significantly associated with ALS: ERGIC1, RAPGEF5, FNBP1, and ATXN3. These results advance our understanding of the genetic basis of sporadic ALS

    miR-124 dosage regulates prefrontal cortex function by dopaminergic modulation

    Get PDF
    MicroRNA-124 (miR-124) is evolutionarily highly conserved among species and one of the most abundantly expressed miRNAs in the developing and mature central nervous system (CNS). Previous studies reported that miR-124 plays a role in CNS development, such as neuronal differentiation, maturation, and survival. However, the role of miR-124 in normal brain function has not yet been revealed. Here, we subjected miR-124-1⁺/⁻ mice, to a comprehensive behavioral battery. We found that miR-124-1⁺/⁻ mice showed impaired prepulse inhibition (PPI), methamphetamine-induced hyperactivity, and social deficits. Whole cell recordings using prefrontal cortex (PFC) slices showed enhanced synaptic transmission in layer 5 pyramidal cells in the miR-124-1⁺/⁻ PFC. Based on the results of behavioral and electrophysiological analysis, we focused on genes involved in the dopaminergic system and identified a significant increase of Drd2 expression level in the miR-124-1⁺/⁻ PFC. Overexpression or knockdown of Drd2 in the control or miR-124-1⁺/⁻ PFC demonstrates that aberrant Drd2 signaling leads to impaired PPI. Furthermore, we identified that expression of glucocorticoid receptor gene Nr3c1, which enhances Drd2 expression, increased in the miR-124-1⁺/⁻ PFC. Taken together, the current study suggests that miR-124 dosage modulates PFC function through repressing the Drd2 pathway, suggesting a critical role of miR-124 in normal PFC function
    corecore